Image Analysis
Visual Surveillance: Railway Level Crossing Monitoring

Presentation of the techniques used

Detect objects in the scene
To detect vehicles, pedestrians or rail traffic, I realized that one of the simplest techniques was pretty much efficient:

Step 1: Operate a "naïve" background subtraction between grey level images.
Step 2: Carry out some morphological operations to remove the noise.
Step 3: Threshold the result obtained to remove small changes or shadows.
The result of step 1 with the background image in Figure 1 and a sample image in Figure 2 is showed in Figure 3.

I manually tuned different parameters and different morphological operations. The detailed result of step 2 is showed in Figure 4 and in Figure 5. Apply morphological operations in the grey level images gives better result than applying in a binary image.
Finally, the result of step 3 is showed in Figure 6 where we only get significant blobs that represent the objects that appear in the scene.

Figure 4. Image after "opening"

Figure 5. Image after "closing"

Figure 6. Image after thresholding

To obtain better results, I compare every image with 5 backgrounds to see which background is the best. (see Figure 8)

From the zones given (see Figure 9), I derived my own zones to detect vehicles and pedestrians (see Figure 10) and to detect rail traffic (see Figure 11).

Detect the presence of rail traffic
I only need to compute the area of intersection between the blobs obtained after thresholding and the 3 zones defined in Figure 11, and with 6 conditions manually tuned, I can tell whether or not there is rail traffic. See Figure 12.

Figure 12. Illustration of the technique

Detect vehicles and pedestrians
I perform basic operations on the blobs obtained after thresholding to know inside which zone they are located:

Step 1: I keep only blobs that have a big enough area.
Step 2: I extract the contour of every blob (hull contour for small objects and basic contour for big ones) that gives me their masks.
Step 3: I then classify every blob using the intersection between the mask of the blob and the mask of the zones. For the right side of the road, I also compute the centroids of the blobs.
An illustration of this technique is presented in Figure 13.

Figure 13. Illustration of the technique

I first compute the Canny edge detector of the image (see Figure 14), then I apply the Hough Line Transform on the Canny edge detector of the image (see Figure 15). I select only valid lines and from the two best lines, I can then extract the parameters of the line (see Figure 16).

Figure 14. Image with a barrier

Figure 15. Canny edge detector in white and Hough Lines in blue

Figure 16. Zones for rail traffic detection

I also need to carry out another test to prevent false positive results that occur especially when there is rail traffic.
I use the Saturation channel of the HSV colour space (see Figure 17) to detect the red stripes of the barrier. I analyze the ratio of red stripes / white stripes for the first four stripes of the barrier. If the ratio is high, it is a barrier, if it is low, it is not. (see Figure 18 and Figure 19)

Figure 17. Saturation channel of an image with a barrier

Figure 18. Threshold on the saturation channel

Figure 19. Two masks are automatically generated to compute the ratio

Performance analysis of the prototype

I used the 576 samples images provided to test my prototype.

	True A road vehicle is leaving the railway line crossing	False negative	True negative	False positive
Succeeded	$58 / 59$	$1 / 59$	$44 / 46$	$2 / 46$
Failed	$\mathbf{9 8} \%$	2%	$\mathbf{9 6 \%}$	4%

True positive	False negative	True negative	False positive	
Succeeded	$556 / 557$	$1 / 557$	$19 / 19$	$0 / 19$
		$\mathbf{1 0 0 \%}$	0%	$\mathbf{1 0 0 \%}$

