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ABSTRACT 

 
    This paper is about computer vision with one camera 

embedded robot rovio manufactured by WowWee. We use 

image processing and analysis to solve several modern 

technical issues, such as autonomous robot navigation in an 

unknown environment, obstacle detecting, obstacle 

avoidance, but also map editing of an unknown environment. 

The final purpose of this project is to read physical sensors 

(our target) to extract information such as gas level in a 

mine. 

Index Terms— Computer vision, obstacle detecting and 

avoidance using image processing & analysis, autonomous 

navigation in unknown environment, target tracking and 

reading. 

1. INTRODUCTION 

 

    Nowadays, mine safety is becoming a big issue. The 

rescue of Chile miners in august 2010 took 69 days, 

hopefully they all survived. But 33 minors died in New-

Zealand coal mine after a blast in November 2010. Such 

events, sadly too frequent, make people realize how unsafe 

was the mines. The mean idea of our project is to provide an 

autonomous agile robot rovio, capable of moving by itself in 

a mine. The robot is also able of detecting any obstacle and 

to edit a map of those obstacles. Then the robot searches for 

gas level sensors and read them, then reports. With this 

innovative solution, it may be safer - in the future - to rescue 

people in the mines. 

 

2. LITERATURE REVIEW 

 

A lot of researches have been done in vision-based 

navigation for indoor robots. Depending on the requirement 

of the navigation, several techniques can be applied. The 

review of G. N. DeSouza and A. C. Kak [1] presents three 

types of navigation: “Map-Based Navigation”, “Map-

Building-Based Navigation” and “Mapless Navigation”. The 

first group cannot be applied in this research as the robot is 

not supposed to have a prior knowledge of the environment. 

The two others categories are of interest, one enabling to 

perform a navigation based on an “Obstacle avoidance 

behavior” while the other can allow to develop a more 

reliable navigation by creating a map of the environment. 

Regarding the “Mapless Navigation”, Santos-Victor et 

al. have focused on “Navigation using Optical Flow” based 

on the visual behavior of bees. [2] Their idea is that the two 

eyes of a honeybee cannot provide sufficient depth 

information due to the small distance of the two eyes. They 

explain than a bee can maintain itself in the middle of a 

corridor using “the difference between the velocity 

information computed from the left and the right eye”. This 

behavior can be applied for a robot: “move to the left if the 

velocity measured by the right eye is larger than that 

measured by the left (or vice versa)”. Maksym Usov in his 

MSc report [3] successfully applied this technique to create 

an obstacle avoidance behavior for a robot that has a single 

camera. It is able to follow a corridor, to avoid obstacles and 

to detect front collisions. The major drawback of this 

technique is that you need to be able to compute optical 

flow. It will therefore not be applicable when no 

“distinguishable features” can be found [3], i.e. when the 

obstacles are not sufficiently textured. Another drawback is 

that this technique is applicable only when the robot drives 

forward and that the “rotational speed is not larger than a 

certain factor times the translational speed” [1].  

A number of papers deal with “Map-Building-Based 

Navigation”. It can be seen in the survey of G. N. DeSouza 

and A. C. Kak [1] that this is often done using specific 

material or specific calibration procedures. Stereovision is 

for instance achieved in [4] using trinocular vision. 

    The work of Jeffrey Buente et al. [5] presents an 

implementation of the Simultaneous Localization and Map 

Building (SLAM) with the Rovio robot manufactured by 

WowWee. They use the specificity of the Rovio robot to 

create a simple stereo vision algorithm that can gives precise 

results without needing to deal with “complex ways of […] 

matching edges between images”. They use an occupancy 

grid, proposed by Moravec and Elfes [6] to map the 

environment. Their work enabled them to map accurately an 

indoor environment with “an average of 18.56 cm error”. 

Their technique has several drawbacks: the floor needs to be 

sufficiently uniform because of the simplification of the 

Stereovision. This can be addressed improving the way to 

determine “what constitute a unique distinct edge”. 



 
Figure 1: middle image used to 

detect the first obstacle in every 

column 

 
Figure 2: down image with the 

first obstacle detected 

 
Figure 3: output of the Canny 

edge detector on the middle image 

 
Figure 4: output of the Canny 

edge detector on the down image 

 In their demonstration, the robot maps only the environment 

from two positions. Therefore, if more movements are 

involved, the accuracy could really become worst. 

    Their work is still of great interest for us as it can provide 

a measure of the distance to the obstacles. This can be used 

to make a simple obstacle avoidance algorithm that can 

enable the robot to move safely in an unknown environment 

and it can also be used to map the environment, keeping in 

mind that the information extracted should be used with 

care. 

3. NAVIGATION STRATEGY 

 

3.1. General Navigation strategy 

 

    At the beginning, the robot does a 360° turn in order to 

map everything around it.  

    Then in order to find all the sensors, the robot has to 

explore as much as possible all the part of the mine. Each 

time the robot go to a new position all the points in its field 

of view with a distance less than 70 cm are considered as 

“visited”. If the robot hasn’t detected any sensor in these 

points, it means that there is no sensor and we don’t have to 

go there again. When the robot arrives in a new position it 

calls the sensor detection function (cf part 4.1). If the 

function returns several non-read rectangles, we take the one 

which has more feature points. Then the image is split in 3 

parts. If the rectangle is in the left(respectively right) part the 

robot turns left(respectively right) and then the robot goes 

straight forward if it cans. If the rectangle is in the center of 

the image the robot tries to go straight forward. If it can’t, 

then the image is split in 2 parts. If the rectangle is in the 

left(respectively right), the robot turns left(respectively 

right) then goes straight forward if it can and finally turn 

right(respectively left).    

 
Figure 5: middle distances 

 
Figure 6: Down distances 

 
Figure 7: stereo difference 

distances 

 
Figure 8: distance of obstacle 

After several tests we estimated that each time the rotation 

function is called the robot turns of 23 degrees. We also 

estimated that when the straight forward function is called 

the robot does 15cm. 

   If no sensors are detected the robot goes to the closest non 

explored point accessible. If there is no unexplored 

accessible point, the robot goes randomly in an accessible 

position. Finally, after moving, the robot updates the map 

with what is in front of him. 

 

3.2. Obstacle distancing  

 

To extract the distance to the obstacles in front of the 

robot, we used the method developed by Jeffrey Buente et 

al. [5]. Assuming the floor is sufficiently uniform greatly 

simplifies the depth recovery from the stereovision. The aim 

of this work is to provide a prototype and therefore, this part 

should be refined for a more robust application.  

The specificity of the Rovio robot is that it can raise its 

camera in three positions that are fixed. For the stereovision, 

we only use the down and the middle position of the camera. 

This method uses three measurements extracted from every 

column of the two images to detect the distance to an 

obstacle. The first measurement is the difference of the 

position of the first edge detected in the floor in the two 

images. The second one is the position of the first edge 

detected in the floor in the middle image (see Figure 1) 

while the third one is the one detected in the down image 

(see Figure 2). To detect the edges, we first apply the Canny 

edge detector on the two images (see Figure 3 and Figure 4). 

We can use the middle image from the bottom as there is no 

noise (see Figure 3) whereas we must start from a fixed row 

that has been manually tuned to avoid the noise in the down 

image (see Figure 4). The green lines in the Figure 4 



represent the interval in which the edges found in the middle 

images must lie in the down image.  

As stated in the paper, we calibrated the distance output 

using a set of stereo images with known distances to the 

obstacles. We then used a built-in Matlab regression 

algorithm to fit our data points (see Figure 5, Figure 6 and 

Figure 7). 

For every column, we have real distance measurements 

that we combine together using the same method as in [5]. 

We discard invalid values, we use the mean of all the valid 

distances except when the robot is too close to an obstacle 

where we only use the down distances. We then take the 

median distances to discard invalid values for a given 

number of intervals. We can then obtain a distance 

representation to the obstacles (see Figure 8) 

 

3.3. Map editing  

 

Defined as “the branch of the robotics which deals with 

the study and application of ability to construct map or floor 

plan of the environment by the autonomous robot and to 

localize itself in it”, in our case, considering that the robot 

it’s not particularly quick, we determined that it was 

necessary to create a floor plan representing the reality 

around the robot in order to not repeat unnecessary readings 

and keep a record of the area already explored. For this goal, 

first we had to decide what is worth to store and what was 

going to be the use of the map for the functionality of our 

robot. 

For the first decision we realize that storing lots of the 

information in the map was not a good decision due to the 

fact that the accuracy of the mapping strongly depends on 

the accuracy of the robot localization. This means that in our 

case of study, as the robot has some localization random 

error with each forward movement due to his mechanics the 

map is going to have some imprecisions. So we decided to 

store only two pieces of information for each point of the 

map, the estimation of the objects position with an 

associated reliability and the sensor exploration state. 

    Once we decided what to store, we studied the use of the 

map for the navigation. As our robot tries to find sensors in 

the area, we implemented the ability to give advice to the 

navigation function, about in which direction is more likely 

to find a sensor. The functionality of knowing previous 

sensor maps was proven to be useful for avoiding reading 

them several times. Another interesting functionality was the 

estimation of the possibility to make a straight forward 

movement based on the objects already mapped. For future 

works it could be interesting to implement a dynamic size 

map and a path planning algorithm to go to a specific point 

in the map, which is not reasonable at this moment due to 

the robot localizing errors added to our mechanical issues. 

 
Figure 9 : Map of obstacle and sensors 

 

4. THE SENSORS 

4.1. Detecting 

 

4.1.1. Previous work 
    To detect an object there are many different methods, we 

thought at the beginning about using a template matching as 

it is describe in the article [7]. But the problem is that we 

would only have detected sensors at a fixed distance, indeed 

the template has a certain size so it matches with the scene 

image when the robot is at a fixed distance from the sensor. 

We could have tried this method but we also wanted a 

method that can detect the sensor even if it is partially 

hidden. So we thought about the features detection and 

matching. We decide to use the SURF algorithm to extract 

the points of interest (it’s the most scale/rotation invariant 

method). 

We found some explanations about the SURF algorithm in 

the course lecture notes of Computer Vision of Toby 

Breckon [8] and in some examples of opencv function using 

SURF in the Opencv2.1 and Opencv 2.2 folder 

(findobject.c,matcher_simple.cpp,matching_to_many_image

s.cpp).  

    Our work can be separate into two steps. 

 

4.1.2. Our First approach 

    We use the SURF algorithm to extract the points of 

interest of the images of the scene (query image) and of the 

sensor (training image). Then we try to find some matched 

pair between the points of interest of the scene and the 

sensor. Two points are matched if their SURF descriptors 

are similar (ie the distance between them is lower than a 

certain threshold). Then we define a rectangle in the image 

where most of the points are located. We also try to 

calculate the homography matrix which will enable us to 

find the position of the sensor in the scene image (we only 

use this information as a proof of good detection). In order 

not to have false detection, we add a test to verify if there 

are some  



 
Figure 10 : Matching sensor 

keypoints and image keypoints 

 
Figure 11 : output of the sensor 

detector 

red pixels in the image. If there aren't red pixels we consider 

that there is no sensor in the image. 

    The final outputs are a rectangle and an integer. The 

integer represents the probability that there is a sensor inside 

this rectangle. This probability is null when there are no red 

pixels within the image and depends on the number of 

features points inside the rectangle.  

    This method allows us to detect a sensor when the robot is 

in front of the sensor and that the distance between the robot 

and the sensor is less than 1 meter.  

 

4.1.3. Our Second approach 

    In order to improve the results, we use some functions of 

opencv2.2  which enable us to extract features from several 

sensors image. The matching is then done with all these 

features. We also change the output of the function. The 

function draw rectangles around all cluster of points and 

then returns all these rectangles with a probability of sensor 

presence for each one. This enables the detection of two 

sensors within an image. (cf figure12). 

    Like previously, the probability is null when there is no 

red pixels within the image and depends on the number of 

features points inside the rectangle. To avoid false detection 

when the sensor is too far, we decide to take into account 

only the feature points that are close to the sensor ( less than 

1,50m). 

    We call the reading function when the robot is  at 75 cm 

maximum of the sensor and after checking on the map that 

we haven’t read the sensor yet. 

Figure 12 : Result for detecting sensor (29 pictures test) 

 

4.2. Reading 

 

    Once the detecting part of our project has return a 

rectangle – region of interest of our current picture- mixed 

with probability of having a sensor in this rectangle, we can 

read the sensor. First, we find red pixels of the picture. We 

use the square distance between each pixel of the rectangle 

and a red pixel. In RGB we have red pixel = (255,0,0), let 

call P the current pixel, (r,g,b) the three color channel red, 

green, blue. The pixel values are (P.r, P.g, P.b). Then the 

quadratic distance between the pixel P and the color red is 

equal to d. 

    
The second part of reading is to count the contours of the 

red stripes (from the sensor. To find the most interesting 

contours, we put a threshold on the size of the stripes areas.  

    Before optimization, the efficiency of this reader was 

74%. The main error factor was blurred pictures, and the 

fact that the sensor was too far to be read. Now, with a good 

reading distance (between 20cm and 1,5m) the reader 

efficiency has grown to 97%. To avoid noise we took picture 

only when the robot is not moving, and we use the obstacle 

avoidance part of our project to determine how far the 

sensor is, therefore we usually have good reading when it is 

possible to read the sensor. 

 

5. CONCLUSIONS AND FURTHER WORK 

 

   The robot moving precision measurement are quite poor, 

so more the robot moves in an unknown environment and 

more error we get on positioning it. The measurement of the 

moving distance is not so efficient (few cm of error usually) 

also. But all the object avoidance is quite strong as the 

sensor reading. Further Works may help us to improve the 

precision of the robot movement and our real time map 

editor would be very powerful. 
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 Good detection  

(1st approach) 

Good detection 

 (2nd approach) 

Close sensors 71,43% 100% 

Far sensors  (> 1 meter) 0% 100% 

Fuzzy image 0% 80% 

All kinds 34,5% 96,6% 


