
APPLICATIONS OF DSP & COMPUTING VISION COMPUTER VISION GROUP

PROJECT : SENSOR ROBOTS FOR ENSURING POST-INCIDENT MINING SAFETY

Suzanne Bizot, Alejo Martin, Cyril Limam, Hubert Lacote, Pierre-Edouard Iung

Cranfield University Students in Msc Computational and Software Techniques in Engineering

Option : Digital Signal & Image Processing

ABSTRACT

 This paper is about computer vision with one camera

embedded robot rovio manufactured by WowWee. We use

image processing and analysis to solve several modern

technical issues, such as autonomous robot navigation in an

unknown environment, obstacle detecting, obstacle

avoidance, but also map editing of an unknown environment.

The final purpose of this project is to read physical sensors

(our target) to extract information such as gas level in a

mine.

Index Terms— Computer vision, obstacle detecting and

avoidance using image processing & analysis, autonomous

navigation in unknown environment, target tracking and

reading.

1. INTRODUCTION

 Nowadays, mine safety is becoming a big issue. The

rescue of Chile miners in august 2010 took 69 days,

hopefully they all survived. But 33 minors died in New-

Zealand coal mine after a blast in November 2010. Such

events, sadly too frequent, make people realize how unsafe

was the mines. The mean idea of our project is to provide an

autonomous agile robot rovio, capable of moving by itself in

a mine. The robot is also able of detecting any obstacle and

to edit a map of those obstacles. Then the robot searches for

gas level sensors and read them, then reports. With this

innovative solution, it may be safer - in the future - to rescue

people in the mines.

2. LITERATURE REVIEW

A lot of researches have been done in vision-based

navigation for indoor robots. Depending on the requirement

of the navigation, several techniques can be applied. The

review of G. N. DeSouza and A. C. Kak [1] presents three

types of navigation: “Map-Based Navigation”, “Map-

Building-Based Navigation” and “Mapless Navigation”. The

first group cannot be applied in this research as the robot is

not supposed to have a prior knowledge of the environment.

The two others categories are of interest, one enabling to

perform a navigation based on an “Obstacle avoidance

behavior” while the other can allow to develop a more

reliable navigation by creating a map of the environment.

Regarding the “Mapless Navigation”, Santos-Victor et

al. have focused on “Navigation using Optical Flow” based

on the visual behavior of bees. [2] Their idea is that the two

eyes of a honeybee cannot provide sufficient depth

information due to the small distance of the two eyes. They

explain than a bee can maintain itself in the middle of a

corridor using “the difference between the velocity

information computed from the left and the right eye”. This

behavior can be applied for a robot: “move to the left if the

velocity measured by the right eye is larger than that

measured by the left (or vice versa)”. Maksym Usov in his

MSc report [3] successfully applied this technique to create

an obstacle avoidance behavior for a robot that has a single

camera. It is able to follow a corridor, to avoid obstacles and

to detect front collisions. The major drawback of this

technique is that you need to be able to compute optical

flow. It will therefore not be applicable when no

“distinguishable features” can be found [3], i.e. when the

obstacles are not sufficiently textured. Another drawback is

that this technique is applicable only when the robot drives

forward and that the “rotational speed is not larger than a

certain factor times the translational speed” [1].

A number of papers deal with “Map-Building-Based

Navigation”. It can be seen in the survey of G. N. DeSouza

and A. C. Kak [1] that this is often done using specific

material or specific calibration procedures. Stereovision is

for instance achieved in [4] using trinocular vision.

 The work of Jeffrey Buente et al. [5] presents an

implementation of the Simultaneous Localization and Map

Building (SLAM) with the Rovio robot manufactured by

WowWee. They use the specificity of the Rovio robot to

create a simple stereo vision algorithm that can gives precise

results without needing to deal with “complex ways of […]

matching edges between images”. They use an occupancy

grid, proposed by Moravec and Elfes [6] to map the

environment. Their work enabled them to map accurately an

indoor environment with “an average of 18.56 cm error”.

Their technique has several drawbacks: the floor needs to be

sufficiently uniform because of the simplification of the

Stereovision. This can be addressed improving the way to

determine “what constitute a unique distinct edge”.

Figure 1: middle image used to

detect the first obstacle in every

column

Figure 2: down image with the

first obstacle detected

Figure 3: output of the Canny

edge detector on the middle image

Figure 4: output of the Canny

edge detector on the down image

 In their demonstration, the robot maps only the environment

from two positions. Therefore, if more movements are

involved, the accuracy could really become worst.

 Their work is still of great interest for us as it can provide

a measure of the distance to the obstacles. This can be used

to make a simple obstacle avoidance algorithm that can

enable the robot to move safely in an unknown environment

and it can also be used to map the environment, keeping in

mind that the information extracted should be used with

care.

3. NAVIGATION STRATEGY

3.1. General Navigation strategy

 At the beginning, the robot does a 360° turn in order to

map everything around it.

 Then in order to find all the sensors, the robot has to

explore as much as possible all the part of the mine. Each

time the robot go to a new position all the points in its field

of view with a distance less than 70 cm are considered as

“visited”. If the robot hasn’t detected any sensor in these

points, it means that there is no sensor and we don’t have to

go there again. When the robot arrives in a new position it

calls the sensor detection function (cf part 4.1). If the

function returns several non-read rectangles, we take the one

which has more feature points. Then the image is split in 3

parts. If the rectangle is in the left(respectively right) part the

robot turns left(respectively right) and then the robot goes

straight forward if it cans. If the rectangle is in the center of

the image the robot tries to go straight forward. If it can’t,

then the image is split in 2 parts. If the rectangle is in the

left(respectively right), the robot turns left(respectively

right) then goes straight forward if it can and finally turn

right(respectively left).

Figure 5: middle distances

Figure 6: Down distances

Figure 7: stereo difference

distances

Figure 8: distance of obstacle

After several tests we estimated that each time the rotation

function is called the robot turns of 23 degrees. We also

estimated that when the straight forward function is called

the robot does 15cm.

 If no sensors are detected the robot goes to the closest non

explored point accessible. If there is no unexplored

accessible point, the robot goes randomly in an accessible

position. Finally, after moving, the robot updates the map

with what is in front of him.

3.2. Obstacle distancing

To extract the distance to the obstacles in front of the

robot, we used the method developed by Jeffrey Buente et

al. [5]. Assuming the floor is sufficiently uniform greatly

simplifies the depth recovery from the stereovision. The aim

of this work is to provide a prototype and therefore, this part

should be refined for a more robust application.

The specificity of the Rovio robot is that it can raise its

camera in three positions that are fixed. For the stereovision,

we only use the down and the middle position of the camera.

This method uses three measurements extracted from every

column of the two images to detect the distance to an

obstacle. The first measurement is the difference of the

position of the first edge detected in the floor in the two

images. The second one is the position of the first edge

detected in the floor in the middle image (see Figure 1)

while the third one is the one detected in the down image

(see Figure 2). To detect the edges, we first apply the Canny

edge detector on the two images (see Figure 3 and Figure 4).

We can use the middle image from the bottom as there is no

noise (see Figure 3) whereas we must start from a fixed row

that has been manually tuned to avoid the noise in the down

image (see Figure 4). The green lines in the Figure 4

represent the interval in which the edges found in the middle

images must lie in the down image.

As stated in the paper, we calibrated the distance output

using a set of stereo images with known distances to the

obstacles. We then used a built-in Matlab regression

algorithm to fit our data points (see Figure 5, Figure 6 and

Figure 7).

For every column, we have real distance measurements

that we combine together using the same method as in [5].

We discard invalid values, we use the mean of all the valid

distances except when the robot is too close to an obstacle

where we only use the down distances. We then take the

median distances to discard invalid values for a given

number of intervals. We can then obtain a distance

representation to the obstacles (see Figure 8)

3.3. Map editing

Defined as “the branch of the robotics which deals with

the study and application of ability to construct map or floor

plan of the environment by the autonomous robot and to

localize itself in it”, in our case, considering that the robot

it’s not particularly quick, we determined that it was

necessary to create a floor plan representing the reality

around the robot in order to not repeat unnecessary readings

and keep a record of the area already explored. For this goal,

first we had to decide what is worth to store and what was

going to be the use of the map for the functionality of our

robot.

For the first decision we realize that storing lots of the

information in the map was not a good decision due to the

fact that the accuracy of the mapping strongly depends on

the accuracy of the robot localization. This means that in our

case of study, as the robot has some localization random

error with each forward movement due to his mechanics the

map is going to have some imprecisions. So we decided to

store only two pieces of information for each point of the

map, the estimation of the objects position with an

associated reliability and the sensor exploration state.

 Once we decided what to store, we studied the use of the

map for the navigation. As our robot tries to find sensors in

the area, we implemented the ability to give advice to the

navigation function, about in which direction is more likely

to find a sensor. The functionality of knowing previous

sensor maps was proven to be useful for avoiding reading

them several times. Another interesting functionality was the

estimation of the possibility to make a straight forward

movement based on the objects already mapped. For future

works it could be interesting to implement a dynamic size

map and a path planning algorithm to go to a specific point

in the map, which is not reasonable at this moment due to

the robot localizing errors added to our mechanical issues.

Figure 9 : Map of obstacle and sensors

4. THE SENSORS

4.1. Detecting

4.1.1. Previous work
 To detect an object there are many different methods, we

thought at the beginning about using a template matching as

it is describe in the article [7]. But the problem is that we

would only have detected sensors at a fixed distance, indeed

the template has a certain size so it matches with the scene

image when the robot is at a fixed distance from the sensor.

We could have tried this method but we also wanted a

method that can detect the sensor even if it is partially

hidden. So we thought about the features detection and

matching. We decide to use the SURF algorithm to extract

the points of interest (it’s the most scale/rotation invariant

method).

We found some explanations about the SURF algorithm in

the course lecture notes of Computer Vision of Toby

Breckon [8] and in some examples of opencv function using

SURF in the Opencv2.1 and Opencv 2.2 folder

(findobject.c,matcher_simple.cpp,matching_to_many_image

s.cpp).

 Our work can be separate into two steps.

4.1.2. Our First approach

 We use the SURF algorithm to extract the points of

interest of the images of the scene (query image) and of the

sensor (training image). Then we try to find some matched

pair between the points of interest of the scene and the

sensor. Two points are matched if their SURF descriptors

are similar (ie the distance between them is lower than a

certain threshold). Then we define a rectangle in the image

where most of the points are located. We also try to

calculate the homography matrix which will enable us to

find the position of the sensor in the scene image (we only

use this information as a proof of good detection). In order

not to have false detection, we add a test to verify if there

are some

Figure 10 : Matching sensor

keypoints and image keypoints

Figure 11 : output of the sensor

detector

red pixels in the image. If there aren't red pixels we consider

that there is no sensor in the image.

 The final outputs are a rectangle and an integer. The

integer represents the probability that there is a sensor inside

this rectangle. This probability is null when there are no red

pixels within the image and depends on the number of

features points inside the rectangle.

 This method allows us to detect a sensor when the robot is

in front of the sensor and that the distance between the robot

and the sensor is less than 1 meter.

4.1.3. Our Second approach

 In order to improve the results, we use some functions of

opencv2.2 which enable us to extract features from several

sensors image. The matching is then done with all these

features. We also change the output of the function. The

function draw rectangles around all cluster of points and

then returns all these rectangles with a probability of sensor

presence for each one. This enables the detection of two

sensors within an image. (cf figure12).

 Like previously, the probability is null when there is no

red pixels within the image and depends on the number of

features points inside the rectangle. To avoid false detection

when the sensor is too far, we decide to take into account

only the feature points that are close to the sensor (less than

1,50m).

 We call the reading function when the robot is at 75 cm

maximum of the sensor and after checking on the map that

we haven’t read the sensor yet.

Figure 12 : Result for detecting sensor (29 pictures test)

4.2. Reading

 Once the detecting part of our project has return a

rectangle – region of interest of our current picture- mixed

with probability of having a sensor in this rectangle, we can

read the sensor. First, we find red pixels of the picture. We

use the square distance between each pixel of the rectangle

and a red pixel. In RGB we have red pixel = (255,0,0), let

call P the current pixel, (r,g,b) the three color channel red,

green, blue. The pixel values are (P.r, P.g, P.b). Then the

quadratic distance between the pixel P and the color red is

equal to d.

The second part of reading is to count the contours of the

red stripes (from the sensor. To find the most interesting

contours, we put a threshold on the size of the stripes areas.

 Before optimization, the efficiency of this reader was

74%. The main error factor was blurred pictures, and the

fact that the sensor was too far to be read. Now, with a good

reading distance (between 20cm and 1,5m) the reader

efficiency has grown to 97%. To avoid noise we took picture

only when the robot is not moving, and we use the obstacle

avoidance part of our project to determine how far the

sensor is, therefore we usually have good reading when it is

possible to read the sensor.

5. CONCLUSIONS AND FURTHER WORK

 The robot moving precision measurement are quite poor,

so more the robot moves in an unknown environment and

more error we get on positioning it. The measurement of the

moving distance is not so efficient (few cm of error usually)

also. But all the object avoidance is quite strong as the

sensor reading. Further Works may help us to improve the

precision of the robot movement and our real time map

editor would be very powerful.

6. REFERENCES

[1] Guilherme N. DeSouza and Avinash C. Kak, “Vision for Mobile

Robot Navigation: A Survey,” IEEE Trans. Pattern analysis and

machine intelligence, vol. 24, no. 2, February 2002.

[2] J. Santos-Victor, G. Sandini, F. Curotto, and S. Garibaldi,

“Divergent Stereo for Robot Navigation: Learning from Bees,” Proc.

IEEE CS Conf. Computer Vision and Pattern Recognition, 1993.

[3] Maksym Usov, “Vision Based Mobile Robot Navigation,”

University of Twente, June 2006.

[4] N. Ayache and P.T. Sander, “Artifical Vision for Mobile Robots:

Stereo Vision and Multisensory Perception,” eds. MIT Press, 1991.

[5] Jeffrey Buente, Rohan Sharma and Daniel Mejía, “Visual SLAM

using Rovio”, Cornell University, Spring 2010.

[6] H.P. Moravec and A. Elfes, “High Resolution Maps from Wide

Angle Sonar,” Proc. IEEE Int’l Conf. Robotics and Automation, pp.

116-121, 1985.

[7] Patrick Rossler, Sascha A. Stoeter, Paul E. Rybski, Maria Gini,

Nikolaos Papanikolopoulos V isual Servoing of a Miniature

RobotToward a Marked Target

[8] Toby Breckon, Image Processing (IP), Cranfield University 2010

 Good detection

(1st approach)

Good detection

 (2nd approach)

Close sensors 71,43% 100%

Far sensors (> 1 meter) 0% 100%

Fuzzy image 0% 80%

All kinds 34,5% 96,6%

