CS – Scientific Knowledge

► CM11	Basic Chemistry
C 30 TD 28 TP 12 THE 50	OBJECTIVES: ► Identify basic concepts in chemistry: atomic and molecular structures, ionic equilibrium, oxidation and kinetics.
AUTUMN SPRING	SYLLABUS: ► Atomic structure and periodic table ► Solubility solutions and solution equilibrium ► Chemical bonds
6 CREDITS	► Acid-base reactions
u	 Oxidation reactions Chemical reaction kinetics

▶ MT11	Basic Algebra
C 45 TD 56 THE 19	OBJECTIVES: ► Harmonise skills acquired at secondary school level. ► Learn to use thorough reasoning.
AUTUMN	► Fundamentals in algebra and algebra analysis. SYLLABUS:
6 CREDITS	 Logic, sets, relations, maps, and group, ring and fields. Polynomials and rational fractions
u	 Real numbers and sequence Real variable functions: limits, continuity, derivatives, Taylor formulae, limited developments Typical functions
Prerequisites : Terminale S	▶ Vector space

10/07/2011 2/10

▶ MT12	Integration – Linear Algebra – Multi–Variable Functions
C 45 TD 42 THE 33	OBJECTIVES: ► Integration theory and techniques. ► Matrix calculus.
SPRING	► Introduction to multi-variable functions.
6 CREDITS	SYLLABUS: ► Linear algebra ► Integration
u	 Improper integrals Differential equations Second-order linear differential equations
Prerequisite : MT11	Second-order inteat differential equations

► MT26	Suites – Séries – Fonctions de variable complexe	Translation in progress
C 30 TD 28 TP 12	OBJECTIVES: Apporter l'essentiel des outils mathématiques d'analyse utiles à l'ingénieur.	
THE 50	SYLLABUS: ▶ Suites et séries numériques	
AUTUMN	 Suites et séries de fonctions Séries trigonométriques et séries entières 	
6 CREDITS	Développement de fonctions en séries entières et de FourierFonctions de variable complexe	
u	 Fonctions holomorphes Transformation de Fourier Transformation de Laplace 	
Prerequisites : MT11, MT12		

▶ PS11	Point Particle Mechanics and Geometric Optics
C 30 TD 28 TP 12 THE 50	OBJECTIVES: ► Acquire basic skills in point particle mechanics (kinematics, dynamics and energy) ► Study simple equipment using laws of geometric optics
AUTUMN SPRING	SYLLABUS: ► Point particle mechanics ► Kinematics ► Dynamics
6 CREDITS	 ▶ Energy ▶ Movement ▶ Geometric optics ▶ Introduction
	➤ Centred optical systems ➤ Image basics ➤ Lenses ➤ Instruments

10/07/2011 3/10

▶ PS12	Measurement: Physics and Electricity
C 30 TD 28 TP 18 THE 44 AUTUMN SPRING 6 CREDITS	OBJECTIVES: ➤ Acquire skills in physical measurements and electrical circuits. SYLLABUS: ➤ Measurements: dimensional analysis, units, errors, uncertainties, uncertainty propagation, use of experimental results. ➤ Electrical circuits: general laws, steady-state, transitory and sinusoidal circuit behaviour. Power electronics ➤ Electrical circuits ➤ Electrostatics

▶ PS25	Solid Mechanics
C 30 TD 28 TP 12 THE 50	OBJECTIVES: Acquire fundamental skills for the analysis of rigid systems under loading. These skills are necessary for studying deformation.
AUTUMN 6 CREDITS	SYLLABUS: ► Kinematics ► Kinetic energy in single and multi-body systems ► Dynamics: fundamentals, general theories, kinetic energy theorem
u	
Prerequisite : PS11	

▶ PS27	Thermodynamics
C 30 TD 28 TP 12	OBJECTIVES: ► Acquire basic theoretical and practical skills: heat engines and thermal transfers.
THE 50	SYLLABUS:
	▶ Revision of basic mathematical tools
SPRING	► From mechanics to thermodynamics
	▶ Study of a thermodynamic system: the perfect gas (PG)
6 CREDITS	▶ First Law of Thermodynamics
	➤ Second Law of Thermodynamics
	► Heat engines (first part)
	➤ Changes of state
	► Heat engines (second part)
	▶ Heat transfers

10/07/2011 4/10

▶ SQ20	Probability and Statistics
C 30 TD 28 THE 62	OBJECTIVES: ► Familiarize students with probability analysis and statistical methods used in laboratories and quality departments.
SPRING	SYLLABUS:
	➤ Probability (probability space, discreet random variables)
6 CREDITS	➤ Statistics (sampling laws, confidence intervals, means, variance, hypothesis testing)
u	
Prerequisite : MT12	

10/07/2011 5/10

TM – Techniques and Methods

▶ LO10	Personal Computers
C 30 TD 28 TP 12 THE 50	OBJECTIVES: ➤ Acquire basic skills in the use of IT tools to be used by engineers. ➤ Be competent in using, supplementing and modifying important IT tools.
AUTUMN 6 CREDITS	SYLLABUS: ➤ Computer structure and IT networks ► Information on multimedia computers ➤ Transmitting information on an IT network ➤ Scientific use of a spreadsheet
	 Advanced spreadsheet use, including macros and additional programmes (e.g. Visual Basic) HTML document editing and creation of a mini website

▶ LO11	Algorithms and Programming: Level I
C 24 TD 28 TP 21 THE 47	OBJECTIVES: ► Familiarise students with algorithm programming ► An application is created using a programming language
SPRING	SYLLABUS: ► Conditions ► Loops
6 CREDITS	▶ Table 1 dimensions ▶ Table 2 dimensions
u .	 ► Character string manipulation ► Functions and procedures ► Structures
Prerequisite : LO10	▶ Files

10/07/2011 6/10

▶ LO21	Algorithms and Programming: Level II
C 30 TD 28 TP 12 THE 50	OBJECTIVES: ► Learn to assemble iterative and recurring algorithms ► Study data structure and its role in algorithm design: lists, binary trees and its integration into the C language.
AUTUMN	SYLLABUS: ▶ Programming
6 CREDITS	 Composite types in C Modules and sub-programmes
u	 Pointers and linked lists Importance of data structure and lists in the creation of algorithms Recurring algorithms
Prerequisite : LO11	▶ Data structure: binary trees▶ Introduction to compiling

▶ LO22	Introduction to Linux and system-oriented C Programming
C 30 TD 21 TP 18	OBJECTIVES: ▶ Introduce students to Linux operating system basics and study the system–oriented C language.
THE 51 SPRING	SYLLABUS: ► Introduction to Linux operating system ► File system ► Process basics
6 CREDITS	➤ Shell: the command language ➤ Recall basics of C programming language
u	 Dependency-tracking build utilities Memory programme organisation High-level I/O: Files and directories
Prerequisite : LO11	► Standard libraries for process management

▶ PM11	Scientific Reasoning
C 15	OBJECTIVES:
TD 56	Develop a scientific approach, give a hypothesis, select and formulate an approach for solving a
THE 49	problem
AUTUMN	 Learn to make a scientific judgement on results Learn to represent a physical problem mathematically and solve it using the appropriate tools
ACTOMIN	Learn to represent a physical problem mathematically and solve it using the appropriate tools
6 CREDITS	SYLLABUS:
3 31123113	▶ Mechanics
	▶ Electricity
-	▶ Waves
	▶ Radioactivity
	► Functions and derivatives
	► Algebra / Vectors / Projections
	➤ Trigonometry
	➤ Differential equations
	➤ Complex numbers

10/07/2011 7/10

▶ TN13	Introduction to Engineering Techniques
C 24 TP 48 THE 48	OBJECTIVES: ➤ Acquire basic skills in different techniques: technical drawing, mechanism analysis, automation. ➤ Use modelling tools: CAD – automation simulation tools.
AUTUMN SPRING	SYLLABUS: ► Orthogonal projection and layout standards ► Hidden views, sections
6 CREDITS	 ▶ Mechanical linkages and kinematic schematics ▶ Bill of materials
	 ▶ Part–sourcing procedures ▶ Functional dimensioning ▶ Introduction to CAD

10/07/2011 8/10

Glossary of Online UV consultation

Prerequisite: Some UVs require that previous UVs must have been successfully completed. Some UVs have several prerequisites.

ACM: Actuators and Mechatronic Control Systems Specialisation.

C: Lecture

Category: Each UV is classed in one of the following categories:

- CS Scientific Knowledge;
- TM Techniques and Methods;
- EC Expression and Communication:
- CG General Education;
- RN Revision;
- EX Exterior.

CDP: Product Design and Development Specialisation **CIM**: Design and Material Innovation Specialisation

UV Code: Code designating a UV

ECTS Credit: The value of a UV in the ECTS system (European Credit Transfer System)

CSM: Mechatronic System Design Specialisation **CSP**: Production Systems Design Specialisation

Department: Teaching Department

Dept. Teaching Department

DIC: Industrial Design Specialisation

EDD: Energy and Sustainable Development Specialisation.

EDIM: Ergonomics, Design and Mechanical Engineering Department

EIC: Ergonomics, Design and Innovation Specialisation

EnE: Energy and Environment Specialisation.

ESE: Electronics and On–Board Systems Specialisation **Specialisation**: Specialisation within a department

GESC: Electrical Engineering and Control Systems Department

UV Guide: The UV Guide catalogues all UVs taught at UTBM during an academic year.

HUMA: Humanities Department

IIRV: Image, Interaction and Virtual Reality Specialisation **ILC**: Software and Knowledge Engineering Specialisation

IMAP: Manufacturing Management and Engineering Department

INFO: Computer Science Department **IP**: Product Industrialisation Specialisation

Language (teaching) : Language in which a UV is taught in. **LEIM :** On–Board Software and Mobile Computing Specialisation

MC : Mechanical Engineering and Design Department

MOM: Numerical Modelling in Mechanics.

MPL: Management of Production and Logistics Specialisation **Level**: Level of UV within degree courses. From 01 to 06

Basket: Contains the UVs chosen by a user to create a personalised catalogue

PISP: Managing and Computerising Production Systems Specialisation

Recognition: Level of recognition within a specialisation or department (0, 1 or 2) for a UV:

- 0: the UV has no link with the specialisation. It does not count as part of the department?s degree course, but rather as an additional UV.
- 1 or *: the UV is related to the department?s degree course but is not part of the group of key skills to be acquired for the specialisation.
- 2 or **: the UV is part of the group of key skills to be acquired for the specialisation.

R&T: Networks and Telecoms Specialisation

Semester: Indicates during which semester a UV is taught

Timetable Organisation: The way in which a UV is divided up into its constituent parts (TD, TP, Lecture, THE)

TC: Common core. Equivalent to first two years of an Engineering Degree

TD: Tutorials

THE: Unsupervised work. The number of hours of personal work necessary to complete a UV

TP: Practicals

TSE: Transport and Drive Systems Specialisation.

UV (Course Credit): Course taught at UTBM. A Course Credit is taught within a department or department specialisation

10/07/2011 9/10

Key

C : Lecture

TD : Tutorials

TP : Practicals

THE: Unsupervised work. The number of hours of personal work necessary to complete a UV.

Prerequisite: Some UVs require that previous UVs must have been successfully completed. Some UVs have several prerequisites.

EIC : Ergonomics, Design and Innovation Specialisation

DIC : Industrial Design Specialisation

ECTS Credit: The value of a UV in the ECTS system (European Credit Transfer System)

Language (teaching): Language in which a UV is taught in.

10/07/2011 10/10